Certified Global Minima for a Benchmark of Difficult Optimization Problems
نویسندگان
چکیده
We provide the global optimization community with new optimality proofs for 6 deceptive benchmark functions (5 bound-constrained functions and one nonlinearly constrained problem). These highly multimodal nonlinear test problems are among the most challenging benchmark functions for global optimization solvers; some have not been solved even with approximate methods. The global optima that we report have been numerically certified using Charibde (Vanaret et al., 2013), a hybrid algorithm that combines an Evolutionary Algorithm and interval-based methods. While metaheuristics generally solve large problems and provide sufficiently good solutions with limited computation capacity, exact methods are deemed unsuitable for difficult multimodal optimization problems. The achievement of new optimality results by Charibde demonstrates that reconciling stochastic algorithms and numerical analysis methods is a step forward into handling problems that were up to now considered unsolvable. We also provide a comparison with state-of-the-art solvers based on mathematical programming methods and populationbased metaheuristics, and show that Charibde, in addition to being reliable, is highly competitive with the best solvers on the given test functions.
منابع مشابه
EVALUATING EFFICIENCY OF BIG-BANG BIG-CRUNCH ALGORITHM IN BENCHMARK ENGINEERING OPTIMIZATION PROBLEMS
Engineering optimization needs easy-to-use and efficient optimization tools that can be employed for practical purposes. In this context, stochastic search techniques have good reputation and wide acceptability as being powerful tools for solving complex engineering optimization problems. However, increased complexity of some metaheuristic algorithms sometimes makes it difficult for engineers t...
متن کاملIIR System Identification Using Improved Harmony Search Algorithm with Chaos
Due to the fact that the error surface of adaptive infinite impulse response (IIR) systems is generally nonlinear and multimodal, the conventional derivative based techniques fail when used in adaptive identification of such systems. In this case, global optimization techniques are required in order to avoid the local minima. Harmony search (HS), a musical inspired metaheuristic, is a recently ...
متن کاملElite Opposition-based Artificial Bee Colony Algorithm for Global Optimization
Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...
متن کاملEvaluation of Differential Evolution and Tabu Search for Benchmark and Phase Stability Problems
Phase stability (PS) problems play a crucial role in the simulation, design and optimization of separation process such as distillation and extraction. The problem involves the global minimization of tangent plane distance function (TPDF) known as tangent plane criterion. In this work, two promising global optimization techniques: differential evolution (DE) and tabu search (TS) have been evalu...
متن کاملAN EFFICIENT CHARGED SYSTEM SEARCH USING CHAOS
The Charged System Search (CSS) is combined to chaos to solve mathematical global optimization problems. The CSS is a recently developed meta-heuristic optimization technique inspired by the governing laws of physics and mechanics. The present study introduces chaos into the CSS in order to increase its global search mobility for a better global optimization. Nine chaos-based CSS (CCSS) methods...
متن کامل